Arp2/3 Complex Regulates Asymmetric Division and Cytokinesis in Mouse Oocytes

نویسندگان

  • Shao-Chen Sun
  • Zhen-Bo Wang
  • Yong-Nan Xu
  • Seung-Eun Lee
  • Xiang-Shun Cui
  • Nam-Hyung Kim
چکیده

Mammalian oocyte meiotic maturation involves oocyte polarization and a unique asymmetric division, but until now, the underlying mechanisms have been poorly understood. Arp2/3 complex has been shown to regulate actin nucleation and is widely involved in a diverse range of processes such as cell locomotion, phagocytosis and the establishment of cell polarity. Whether Arp2/3 complex participates in oocyte polarization and asymmetric division is unknown. The present study investigated the expression and functions of Arp2/3 complex during mouse oocyte meiotic maturation. Immunofluorescent staining showed that the Arp2/3 complex was restricted to the cortex, with a thickened cap above the meiotic apparatus, and that this localization pattern was depended on actin. Disruption of Arp2/3 complex by a newly-found specific inhibitor CK666, as well as by Arpc2 and Arpc3 RNAi, resulted in a range of effects. These included the failure of asymmetric division, spindle migration, and the formation and completion of oocyte cytokinesis. The formation of the actin cap and cortical granule-free domain (CGFD) was also disrupted, which further confirmed the disruption of spindle migration. Our data suggest that the Arp2/3 complex probably regulates oocyte polarization through its effect on spindle migration, asymmetric division and cytokinesis during mouse oocyte meiotic maturation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

WASH complex regulates Arp2/3 complex for actin-based polar body extrusion in mouse oocytes

Prior to their fertilization, oocytes undergo asymmetric division, which is regulated by actin filaments. Recently, WASH complex were identified as actin nucleation promoting factors (NPF) that activated Arp2/3 complex. However, the roles of WASH complex remain uncertain, particularly for oocyte polarization and asymmetric division. Here, we examined the functions of two important subunits of a...

متن کامل

SKAP2 regulates Arp2/3 complex for actin-mediated asymmetric cytokinesis by interacting with WAVE2 in mouse oocytes

SKAP2 (Src kinase-associated phosphoprotein 2), a substrate of Src family kinases, has been suggested to be involved in actin-mediated cellular processes. However, little is known about its role in mouse oocyte maturation. In this study, we thus investigated the expression, localization, and functions of SKAP2 during mouse oocyte asymmetric division. SKAP2 protein expression was detected at all...

متن کامل

JMY is required for asymmetric division and cytokinesis in mouse oocytes.

JMY is a transcriptional co-factor of p53. Latest work has revealed that JMY is also an actin nucleation factor that regulates new filament assembly and activates Arp2/3 complex in somatic cells; however, roles of JMY in mouse oocyte are unknown. Here we showed the expression and functions of JMY during mouse oocyte meiotic maturation. JMY mRNA is expressed largely from germinal vesicle to meta...

متن کامل

Nucleation Promoting Factors Regulate the Expression and Localization of Arp2/3 Complex during Meiosis of Mouse Oocytes

The actin nucleation factor Arp2/3 complex is a main regulator of actin assembly and is involved in multiple processes like cell migration and adhesion, endocytosis, and the establishment of cell polarity in mitosis. Our previous work showed that the Arp2/3 complex was involved in the actin-mediated mammalian oocyte asymmetric division. However, the regulatory mechanisms and signaling pathway o...

متن کامل

ADP-ribosylation factor 1 regulates asymmetric cell division in female meiosis in the mouse.

Mouse oocytes undergo two successive meiotic divisions to generate one large egg with two small polar bodies. The divisions are essential for preserving the maternal resources to support embryonic development. Although previous studies have shown that some small guanosine triphosphatases, such as RAC, RAN, and CDC42, play important roles in cortical polarization and spindle pole anchoring, no o...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2011